Statistics 210A Lecture 28 Notes

Daniel Raban

December 7, 2021

1 Simultaneous Confidence Bounds for Multiple Hypothesis
Testing

1.1 Recap: Multiple testing

Last time, we began discussing multiple hypothesis testing, where X ~ Py € P ={Fy: 0 €
©} with hypotheses Hy,..., H,, (H; : 0 € Op;). The setup includes individual p-values
p1(X),...,pm(X), rejection set R(X), and true null set Hy.

The classical approach was to control the familywise error rate (FWER),

Py (any false rejections).

The Bonferroni correction, a popular procedure, says to reject H; if p; < a/m and
works under arbitrary dependence. We also learned about a direct improvement, the
closure principle, with an intersection null for S C {1,...,m}. Here, Hg : H; true for
all ¢ € S, which is equivalent to § € (),cg ©0,. Then we use some local test ¢5(X) which
is valid for Hg. The closed testing procedure rejects H; if ¢pg(X) =1 for all S > i.

1.2 Simultaneous upper confidence bounds via closed testing

Definition 1.1. Suppose g1(0),...,gm(0) are estimands. Then C;(X),...,Cn(X) are
simultaneous confidence bounds if

Py(any g;(0) ¢ Ci(X)) < c.

We can use the closed testing procedure to get an upper confidence bound on the
number of null indices in S, [Ho N S]|.

Example 1.1. Suppose we are looking at an experiment for the brain, and each voxel ¢, a
tiny region of the brain, corresponds to a null hypothesis H; (about how the voxel behaves
in testing vs control). If we look at a region S of the brain, the scientist gives the subset
S, the software will give back Ug(X).



Proposition 1.1. If we take
Us(X)= max . 1S N S,

¢SQ ($):
we get simultaneous confidence bounds.

Proof.
Po(any Us(X) < [SNHo(0)]) < Po(dp, (X) =1)

because the first event is a subset of the other. Indeed, if ¢, (X) = 0, then H, is going to
be one of the Sy sets we take the max over. In this case,
Us(X)= max [SNSy|>|SNHo)| O
B3y (x)=0
We can get simultaneous confidence bounds for the proportion of null indices by looking

at Ug(X)/|S|. Goeman, Solari, and other coauthors have developed this procedure in a
series of papers.

1.3 Simultaneous confidence intervals for the Gaussian sequence model

Example 1.2 (Gaussian sequence model). Suppose have X ~ Ny(6, I;) with # € R? and
we want simultaneous confidence intervals for 6y, ...,60y4. Let ¢, be the upper a quantile of
max;—1,. . q|Xi; — 6;|. Then if we take C;j(X) = (X; — ¢, Xi + o), these are simultaneous
confidence intervals for §;. Why? If any 0; ¢ C;(X), then |X; — 0;| > co; in particular,
X; — 0;| > co. In this case, we can show that ¢, = Z34/2> where a — d is the

maxi=1,....d
Sidak correction.

What if we want to make pairwise comparisons? We can deduce a confidence interval
for 0; — 0, from the intervals for 6;,0;.

[(0; — 0;) — (Xi — X;)| < | X — 0] + | X; — 0],

so we could construct a confidence interval with 2¢,. But this is not very good. Instead,
let ¢/, be the upper-a quantile of max; ; [(X; — X;) — (6; — 0;)| = max; j |Z; — Z;|, where
Z = X — 0; this is something we can directly simulate. Then, let

Cij(X) = (Xi — Xj — . Xi — X +¢).

This is called Tukey’s Honestly Significant Difference procedure (HSD).
More generally, we may want simultaneous confidence intervals cy(X) for AT, there
A€ S Let

¢/, = upper-a quantile of sup |\ (X — )|
Aesd—1

= upper-a quantile of || X — 0]|o
~ Xd(a).



1.4 Simultaneous confidence intervals in linear regression

Example 1.3 (Linear regression). Suppose we have @ ~ Ny(0, (X TX)~1) with g € R?
and %2 ~ ﬁxi_ 4> and suppose we want simultaneous confidence intervals for fy,..., 4.

Let ¢ be the upper-a quantile of max;—; 4 |BJ — Bj|/o. We can directly simulate

N—B _ Na(0,(X X))

ag 1 2
\/ n—d Xn—d

This has what is known as a multivariate ¢ distribution. If we want simultaneous
confidence intervals for ;, then we can use

Cj = (B—j — 5o B—j +5ca).
If any B; ¢ Cj, then, as before,

.fllf}ffdw)i — Bil > ca0.
We can do the same procedure with Tukey’s HSD, where we let ¢/, = max; j |Z; — Z;| with
Z = (B — B)/o and use the intervals

Ci’j(X) = (Xz - Xj — C;,Xi - Xj + Ca).

Observe that max; | X; — ;| < ¢y <= || X; — 0|la < Cy. Alternatively, we could try to
control || X — 0|2 < xq(@).
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Our method involves constructing this rectangle and projecting it onto each of the axes.
The naive method of estimating 6; — 6; from before is projecting in the direction of 6; — 6;;
so the projection we use may make a difference.



Example 1.4. Consider testing the global null Hy : 8§ = 0. The max test rejects if
max| X;| > cq ~ v/2logd, and the x? test rejects if | X3 > x3(a) = d + 3Vd. If 0 is
I-sparse (only 61 # 0), then the max test needs |01| > v/2logd, whereas the x? test needs
|01 = [|6]]2 ~ dY4. If 6 is dense, the y2 test is vastly more powerful, but if 6 is sparse, then
the max test is vastly more powerful.

Next time, we will discuss controlling what is known as the false discovery rate.
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